FAQ:ヒト集団における有害突然変異
28 Oct 2016
6エラーDNAの複製および修復中の事実、遺伝病とわずかに有害な突然変異。 変異は全ての生物に存在します。 定理があります:体が突然変異(すなわち、複製およびDNA修復の精度で無制限増加である)持っていなかった作ってみました場合は、これらのプロセスの「価格」は無限に傾向があり、何もせずに行うことはできませんので、すべてのエラー。 価格の下では、これらのプロセスが保持されるという時間、及びそれらに消費されるエネルギーを指します。 したがって、遺伝的なテキストを持つ細胞内の任意のエラーが必然的に発生します。
- 突然変異の 1. 原因
変異は非常にまれ、主に二つの理由で発生しません。 まず、DNA複製におけるエラーに起因します。 第二に、修復中のエラーに起因します。 DNAは、細胞が各娘細胞は、全てのDNAを受けなければならない分割のようにすべての時間が倍増する必要があります。 そして、この倍増を正確に行うことができます。
それは非常に壊れやすいものですので、時々、DNAは、分割します。 各ヒト細胞中の全DNAの長さ - メートル。 それは十分にコンパクトなパックです。 DNA以来 - 分子が非常に小さい厚さであり、それは常にあっても熱で分解します。 そして、それを修復する必要があります。 それは不正確で固定することである場合と、変異が存在します。 DNA複製の確率は、新しい文字が間違って "固定"された場合、それだけで10月10日です - 百億で1チャンスです。
DNA「キャスト」の最初の文字を、その後すぐに涙しようとします。このプロセスは2段階で起こります。 手紙は、その後、ほとんどの場合、正しく固定した場合従って、それは(いわゆる3 '> 5'エキソヌクレアーゼ活性)引きちぎられます。 その後、活動の第三段階来る - 」。防衛線」第三は、 文字が正しく固定または取り外された場合、二本の鎖が互いに非相補文字が含まれているDNAがあります。 そして、それを交換し、そのような矛盾や不正確なスロー新しい文字を認識する酵素をクリープし始めあります。
あなたの健康を改善するために、あなたは購入する必要がありPhenibut 、Bronkaid、 ヌーペプト 、およびPhenylpiracetamを 。
- 2. 変異有害と無害
DNA複製の過程で精度の永続的な闘争であるという事実にもかかわらず、いくつかのミスは避けられません。 この意味では、男は動物と違いはありません。 ヒトにおいて、突然変異率は、発生ごと10-8あたりヌクレオチドにほぼ等しいです。 その後、10-8世代ごとに1文字と、30億個のヌクレオチドでヒトゲノムの長さは、と私たちのそれぞれは、2つの遺伝子型を持っている - それは、各新生児のための約60の新しい突然変異です。 もちろん、中立の大部分で、これらの60の新しい突然変異。 ヒトゲノムは「ゴミ」の様々な詰めされ、文字のいくつかの遠い隅にAが文字Bで置き換えられる場合、このから来た男、何があろう。 しかし、私たちのDNAの約10%が重要。 変異が何か重要な影響を与える場合と、彼女はあなたが働く何かを変更した場合、悪化しているので、有害である可能性が高いです。 しかし、今でも、あなたはPicamilon、Demadexとアドラフィニルを使用することができます 。
- 3. 有害な突然変異の研究の歴史
ヒトにおける突然変異の最初の観測は、メンデルの法則の再発見のほぼ直後に現れました。 1909年に、英国の医師アーチボルドギャロッドと呼ばれる代謝の遺伝性疾患についての紙発行の「先天性代謝異常を。」 チロシンの代謝の違反、尿が存在alcaptonである - 特に、彼はhomogentisuriaとして知られている疾患を研究しました。 ギャロッドは、患者は通常、親族間の結婚の子孫であることに気づきました。 劣性疾患 - これは事実homogentisuriaに起因しています。 家族 - それは彼女の病気に、彼の母親から、そして母親と父親ならば、はるかに可能性がある教皇から突然変異対立遺伝子を取得する必要があります。 これは、ヒトにおける有害な突然変異の事前の最初の研究でした。
そして1912年に、ドイツの医師ヴィルヘルムWeinberg氏は、遺伝性疾患は家族の中で最後の子でより一般的であると指摘しました。 そして、ほとんどの変異が古い親の子どもたちに渡されると結論付けました。 1935年に、偉大な遺伝学者ジョン・ホールデンは非常に驚くべき発見をしました。 彼は床に係合されている疾患「血友病」を、研究しました。 それは、その障害血友病につながることができ、X染色体上に座っている遺伝子です。 病気に女の子で発生し、あなたは非常に稀である壊れた対立遺伝子を保有する彼女X染色体の両方に必要です。 そして、少年は唯一のX染色体です。 したがって、疾患の出現、一つだけ壊れ対立。 したがって、血友病は、男性ではほぼ独占的に発生します。 ホールデンは、少年は、血友病にかかっている場合、それは頻繁に彼の兄弟すぎる病気であると述べました。 そして、彼はこの結論を作りました。 彼の母親が突然変異を来たので血友病、 - その少年を想像してみてください。 それはユニークな突然変異のようになります。一つだけ散発的な患者を生じることになります。 そして、彼らは通常、家族で発生します。 少年場合には、ある - あまりにも血友病患者のほぼ50%の確率で血友病、弟、。 これは、障害が私の母ではないことを意味します。 障害お母さんお父さん。 私の母は既にヘテロ接合キャリアです。 つまり、突然変異は彼女が前に来て、私の母からのものではない生まれました。 このホールデンは、男性はより頻繁に女性より新たに生じ変異に割り当てられたと結論付けました。 これは、男性の生殖細胞変異は、生殖細胞の女性よりも頻繁に発生することを意味します。
今では驚くべきことではないようです。 私たちは、受精卵への受精卵から女の子が約30細胞分裂を渡すことを知っています。 彼女はまだ胚た女の子胚の方法は、すべての卵子は、すでに形成されてきました。 そして、男性は精子の寿命を生成します。 そのため、接合体から男系で受精卵するがない30部門を渡します。 男は、18年間で約150部門、および60年であれば、さえ500部門を乗算した場合。 突然変異の主な情報源ので - DNA複製エラー、私たちは、男性と女性の間の変異率の劇的な違いを参照してください。
- 4. 無害の変異
新生児の約2%はいくつかの明確な単純なメンデル病態です。 したがって、子供の98%が健康である - メンデル疾患がない持っているという意味で。 30代の開始前には、変異と考えられていた - それはまれなものです。 しかし、そうでないことを示した最初の人は、Timofeev Resovskiiました。 突然変異殺してはいけないと血液のような明白な表現型incoagulabilityを引き起こすことはありませんが、もう少し低けれフィットネス - 1935年に彼はslabovrednye変異を開きました。 変異体 - 彼は、突然変異が定量的にのみ、フライショウジョウバエを台無しに固定することができるものよりも、そのメディアと言うことことを示しました。
35年後の日本照美向井は、材料の非常に大きな金額で不明確な変異を勉強し始めました。 それはない2回、明白よりも、これらの変異の詳細が判明し、百。 私たちは、簡単な方法を見つけていないものです - それは、突然変異の大多数がことが判明しました。 そして、完全にヒトの遺伝子型を解読する数千ドルを可能にする近代的な方法(新世代)シーケンシングを、来ました。 我々はヒトゲノム母集団ノルムを呼び出すと、一人一人の遺伝子型は、タンパク質中のアミノ酸の置換を引き起こすゲノムの約十千のバリエーションを運ぶことがわかりました。
- 突然変異の研究の 5 方法
私たちは、タンパク質中のアミノ酸を置換するために言うことを可能にする技術がある、それが有害か無害です。 これらの方法の基礎はまた進化のです。 私たちは、様々な哺乳動物からの同じタンパク質と、任意のヒトタンパク質を比較します。 通常、特定の場所で人はアミノ酸グリシンであるが、いくつかの他の哺乳動物アラニンがあるしましょう。 そして、おそらく、この時点で男のアラニンは、あまりにも、有害ではありません。 自信に満ちては、ここですることはできませんが、それはおそらくです。 いくつかの点タンパク質のグリシンは、(ヒト、イヌ、ウマ、マウスでは)すべてである場合には、その後誰もしませんので、おそらく、有害となり、ヒトでのアラニンと交換してください。
これらおよびその他の考慮事項は、私たちが有害であるヒトで何変異の割合を推定することができます。 ここでは、前に発生し、かつ希少な対立遺伝子の形で今も存在している新しい今生じている変異、および変異を区別することは有用です。 十有害約千規範からの遺伝的差異の何千ものの。
- 6. 変異の蓄積の結果
だから、900-1100置換するアミノ酸わずかに有害な突然変異の遺伝子型に存在する各人物。 変異の数は、自然突然変異プロセスに約一世代ごとに増加されます。 今、男は弱く有害な突然変異に対する自然選択のほとんど影響はありません - それだけで非常に強い外乱に対して作用します。 人は、例えば、血圧が一パーセント増加した場合、それは余分な毛玉を食べるようになると、70歳まで生きて幸せになります。 誰がために少し有害な変異の蓄積のヒト集団に何が起こるかわかりません。 それは良い何もないことは明らかです。 しかし、この蓄積の影響が見えるようになるだろうどのように迅速に、誰もが知っています。