Best deal of the week
DR. DOPING

ブログ

Logo DR. DOPING

FAQ:ネロハイブリッドシステム

04 Nov 2016

ペトリ皿中のニューロンの研究約7事実。

現代の神経科学では、脳の実験的研究には多くの異なるアプローチがあります。 彼らはお互いに時間的および空間分解能は異なります。 そこの方法は、私たちは全体として脳の活動を見ることができるようにする、(脳波および磁気共鳴画像)ですが、彼らは通常、貧しい時間的および空間分解能を持っています。 その結果、私たちは、個々の細胞がどのように働くか、脳のこのまたはその領域をアクティブにする方法を参照することはできませんが。 個々の細胞が働くように、1ミリ秒以上 - 他の方法は、私たちは、高い時間分解能で登録することができます。 しかし、その後、私たちは、脳のほんの一部を見ることができます。

Cogitum、Nootropil、Picamilonペプチド買い

人や他の動物が考えるか、訓練されているによるれる適応行動に関連する脳のダイナミクスは、つまり、我々は細胞レベルでミリ秒の時間スケールでの空間分解能を必要とする方法を理解するために1。 同時に、あなたは、特定の動作に関与している神経細胞のネットワーク全体を見てみたいです。 したがって、我々は、現代科学で技術的な問題があることがわかり:脳全体をカバーする能力を持つ高い細胞と時間分解能を組み合わせた方法はありません。 それを改善するために、あなたは向知性薬によって次のことができます。Solcoseryl、 Cogitum 、 フェノトロピル 、Picamilon、Pantogam。

2.今の神経科学は、この問題を解決する新しい実験モデルを開発しています。 一つのアプローチは、魚類胚ゼブラフィッシュ、例えば、透明な組織を有する動物を使用することです。 動物は、各セルのための脳活動の光記録を行うことができるようにするために固定化し、解決すべき行動の問題を含む仮想環境に置か。

一体型ニューロンネットワーク研究する別の方法は、脳細胞の一部を除去し、栄養培地とのカップでそれらを植える示唆しています。 「チューブ」に数十ニューロンの数千のから成るこのネットワークは、ニューロンの文化と呼ばれています。 あなたは特殊コーティングカップの底をカバーしている場合、細胞は、単層で成長し、我々は簡単にすべての細胞に起こっていたものを登録することができます。 細胞の薄い層での作業は、脳全体の複雑な3次元構造を持つよりもはるかに簡単です。

活動電位と遺伝子発現の変化- 3.私たちは、ペトリ皿、電気的活動で成長したニューロンで観察することができます。 残念ながら、脳内のこれらのプロセスの寄与は挙動がいるあなたは脳を必要とするので、培養中のニューロンが存在しない、説明するのは難しいだろう。 予想外の決定は、ロボットとニューロン培養を接続する必要があることです。 したがって、理想的な透明な「脳」は、「ボディ」に追加されます。 そのロボットは、各種センサによって環境を見て、我々は、カップの底に埋め込まれた電極を用いて、私たちのニューラルネットワークに送信することができ、または他の活性化ニューロンおよびニューロン培養応答は、ロボットの制御を送信します。 これは、あなたがそのような迷路の中の動物などのハイブリッド行動上の問題、神経ようなシステムの前面に配置することができます。

脳4.、脳内に位置し、唯一の他のニューロンと連通している、それぞれが細胞の十億、。 個々のニューロンは、人が必要とするものについては何も知りませんでした。 あなたがエッセイを書いている、とあなたはこのまたはそのアイデアを表現する方法の困難な課題に直面して、あなたが脳内で発見され、唯一の他のセルを参照してくださいしている細胞の相互作用によって、それを決める想像してみてください。 これは、全体として、生物の個々の細胞のレベルでの問題の移転の問題であり、これは神経科学の基本的かつ差し迫った問題の一つです。 細胞の結果としての行動に変化があるかを確認するために、全体のニューラルネットワークを参照する能力は、脳機能の細胞メカニズムの研究のための実験モデルとして、高電位神経ハイブリッドシステムを決定します。

5.ニューロ・ハイブリッドシステムは、積極的に最初の実験は、神経培養を訓練するために行ったとき、2000年代初頭から研究されてきました。 最初の実験では、ロボットは文化が適切なタイミングで適切な答えを与える方法を学ばなければならなかった、使用されていません。 その後、彼らは、仮想した後、実際のロボットと文化を組み合わせたモデルを表示されるようになりました。 今、この分野では世界で約5〜6グループに採用しています。 優れたプロトコル神経ハイブリッド訓練システムがまだあることに留意すべきです。 そして多分それは存在しません。 ニューロ・ハイブリッドは脳研究技術の最前線にあります。 これはよく、培養中のニューロンのネットワークの仕事と脳の類似性についての基本的な前提が真でないことが考えられます。 それとも我々はそれの前にタスクを配置することを可能にする神経細胞培養と通信するための適切な言語を、見つけることができない、我々はそれが決定することにしたいです。

6.ニューロハイブリッドシステムは、だけでなく、科学者だけでなく、芸術家によって研究されています。 アメリカの研究者スティーブン・ポッターとオーストラリアの実験群Simbiotikaはアーティストによる「半死 "を作成するための実験を行いました。 「ハーフデッド」ロボットアームを描いた神経培養管理の作家です。 おそらく、彼の創造的なキャリアの神経ハイブリッドアーティストの頂点は、カジミールの黒い四角で、2004年に書かれた、「ピクセル」の製品でした。

二つの方向に関連した研究ニューロハイブリッドシステム7.即時見通し。 まず、神経回路網を制御するために学ぶことができる自由度の数を増加させる試みで、概念よりも。 今日のためにすべてのモデル - 障害物との衝突回避のタイプのモデル。 ロボットが自律的に一定の方向に行き、彼は障害物に到達したとき、それは神経培養し、神経細胞を培養するために信号を与えるロボットが壁から背を向ける正しい答えを、与えなければなりません。 これは、1つの自由度を使用しています。 明らかに、完全な研究のための研究は、左のロボットが右に行くことができるより大きな自由度を、ご紹介したアクションの組み合わせを構築する必要があります。

第二の方向、技術が - 細胞のみ電気的活動の文化の中で、この時点まで、それらで起こる細胞内プロセスを中心に調査したが、されなかったため、神経画像の近代的手法の導入です。 他の部分ではない一方で、例えば、細胞の神経培養は、トレーニングの特定のエピソードに関与することになります。 学習につながるこれらの細胞を同定するために、それらは、ニューロン可塑性べき緑色蛍光タンパク質に関連する分子カスケードに関与する転写因子をコードする、遺伝子C-FOSの中のプロモーターのトランスジェニック動物を使用することができます。 この緑色蛍光タンパク質は、調査時点で細胞に表示され、私たちは緑の光る細胞見ることができます - 私たちのロボットニューロハイブリッド学ぶために私たちのシステムを可能にするこれらの細胞を。

私たちは、学習の細胞内メカニズムの研究のために幅広い機会を開きます。新しい実験モデルになります神経科学では、学習と文化の中での新しい技術の可塑性のより複雑なモデルを作成し、これらの二つの方向に移動することができる場合と、メモリ。

Someone from the Oman - just purchased the goods:
Protopic ointment 0.1% 30gr